|
|
solar history Historic evolution of the solar cell technology, starting from the electrolyte-based mesoscopic DSSC,8 the ssDSSC where the electrolyte is replaced with an organic p-type hole conductor,32,57the ETA cell where the dye is replaced with an ETA semiconductor layer,27,58 to the MSSC,15 where the ETA is replaced with a perovskite absorber and the n-type TiO2 is replaced with a porous insulating scaffold. Three likely future directions for the perovskite technology are indicated: (i) porous perovskite distributed p−n heterojunction solar cells, where the Al2O3 is removed but the perovskite is directly structured to give a porous film subsequently filled in with a charge conductor, (ii) thin-film p−i−n perovskite solar cells where no porosity is required and the device takes on the structure of an intrinsic, or at least ambipolar, thin perovskite film sandwiched between p- and n- type charge-extracting contacts, or (iii) semiconductor MSSCs, where any solution-processed semiconductor, such as SbS,27 can be... |
1.39 MB |
2022-11-18 |
|
|