Loading...
 

History: DIY大型染敏太陽能玻璃

Preview of version: 49

摘要

染料敏化太陽能電池是一種易於製造且便宜的光伏裝置,可在家庭工作室製作。然而,轉換效率仍然很低,因此很難達到商業目的。但由於二氧化鈦層的圖案以及顏色能有高度的訂制可能性,以及相對於一般體積都偏小的市面產品,家庭式電窯可以被用來製作相對面積較大、具高度藝術性和光電性的互動物件。本篇文章紀錄了30 乘 60 公分大小的成品製作方式,其中化學漿料與染料皆為購自 Great Cells Solar 的產品,因此其相關製程參考了常規的作法。本實驗比較關鍵的部份是在於大型玻璃的燒烤溫度的控制、FTO 玻璃的垂直導通串聯的設計,以及成品的可持續性紀錄。

圖 1. 第三代太陽能電池發展歷史,左上為本實驗中介紹的染料敏化太陽能電池。
圖 1. 第三代太陽能電池發展歷史,左上為本實驗中介紹的染料敏化太陽能電池。
圖 2.  本實驗參考的垂直導通串聯電路設計,但省略了熱融沙林膜的製程,因此只有數週壽命 [1]。
圖 2. 本實驗參考的垂直導通串聯電路設計,但省略了熱融沙林膜的製程,因此只有數週壽命 [1]。

1. 實驗製備

1.1 蝕刻導電玻璃

為了獲得增加總輸出電壓到 5 伏特,我們必需在電池內部製作垂直導通串聯電路。首先必需先對 FTO 玻璃進行蝕刻來製作垂直導通的串聯電路,在圖 2 中解釋了該結構的剖面和 12 個電池在兩片玻璃電極中的相對尺寸與位置。

圖 3. 蝕刻、製造二氧化鈦光電極和鉑對電極層的步驟中,皆使用 Kapton 膠帶製造的網版遮罩和 Doctor blade 方法來製作塗層。
圖 3. 蝕刻、製造二氧化鈦光電極和鉑對電極層的步驟中,皆使用 Kapton 膠帶製造的網版遮罩和 Doctor blade 方法來製作塗層。

圖 4. 使用電表檢查 12 條導電區塊是否完全不導通。
圖 4. 使用電表檢查 12 條導電區塊是否完全不導通。

圖 5. 被蝕刻過後的光電極與對電極,可以由肉眼辨視蝕刻過的區域。
圖 5. 被蝕刻過後的光電極與對電極,可以由肉眼辨視蝕刻過的區域。

1.2 光電極二氧化鈦層製備與燒結

  1. 用 Kapton 膠帶貼在玻璃上並使用玻璃棒塗布器在一個 60 x 30 cm 的 FTO 玻璃上塗布二氧化鈦組擋層 BL-1 漿料。然後,將 FTO 送入電窯中在以每分鐘 8 ºC的爬升速度達到 125ºC ,並維持烘烤 30 分鐘再自然冷卻到室溫。
  2. 以相同方式塗布二氧化鈦多孔層 18NR-T 漿料,以每分鐘 8 ºC的爬升速度達到 500ºC。
圖 6. 二氧化鈦光電極燒結溫度參考曲線。
圖 6. 二氧化鈦光電極燒結溫度參考曲線。

1.3 對電極鉑層製備與燒結

  1. 對電極的製備:同樣使用玻璃塗布器在 FTO 玻璃上塗布 PT-1 鉑漿料,然後在以每分鐘 8 ºC的爬升速度到 500ºC 並維持 30 分鐘後再自然冷卻至室溫。
圖 7. 鉑對電極燒結溫度參考曲線。
圖 7. 鉑對電極燒結溫度參考曲線。

1.4 染料製備

  1. 將 0.1 克的 N719 染料粉末溶解在 250 毫升的 95% 乙醇中,使用加熱攪拌機在 50ºC 下攪拌18 小時後獲得 N719 染料溶液,裝入避光玻璃瓶並在室溫下儲放於陰暗處。
圖 8. 以微量秤量測100mg的N719染料粉末。
圖 8. 以微量秤量測100mg的N719染料粉末。
圖 9. N719粉末在熱攪伴過程中應避免光害。
圖 9. N719粉末在熱攪伴過程中應避免光害。

1.5染製光電極

  1. 在將光陽極浸入N719染劑之前,將陽極放置在設定為特定溫度的熱板上。在使用前,染料溶液也被加熱到接近熱板溫度。為了洗掉多孔 TiO2 工作電極中殘留的染料溶液,將電極浸泡在微溫(~40°C)乙醇中 5 分鐘,並輕輕攪拌。
  2. 在室溫下將製備好的光陽極浸入 N719 染液 24 小時後取出,將染液回收至避光瓶後再以乙醇將玻璃上多餘的染液沖掉。

1.5 在鉑對電極上製備銀線

圖 10. 使用 Kapton 膠帶製作銀線遮罩。
圖 10. 使用 Kapton 膠帶製作銀線遮罩。
圖 11. 銀漿由 Acheson 購買的 725A,使用玻璃塗布器塗布 。塗布完後將對電極放入電窯以 120ºC 烘烤 15 分鐘,再自然冷卻至室溫。
圖 11. 銀漿由 Acheson 購買的 725A,使用玻璃塗布器塗布 。塗布完後將對電極放入電窯以 120ºC 烘烤 15 分鐘,再自然冷卻至室溫。

1.6 封裝

  1. 兩個電極面上的塗層彼此面對面對接,使用數個夾子固定後並在其間注入電解液,使用滴管從開放的間隙中滴幾滴從 Great Cell Solar 購買的 EL-UHSE 電解液。
圖 12. 準備完成的對電極(左)與光電極(右)。
圖 12. 準備完成的對電極(左)與光電極(右)。
圖 13. 組裝後的30x60cm染敏電池(無涓印圖案化、有銀線、垂直導通串聯。
圖 13. 組裝後的30x60cm染敏電池(無涓印圖案化、有銀線、垂直導通串聯。

2. 結果與問題

2.1 量測電壓

  1. 本實驗沒有使用太陽光模擬器做為測試光源,只有在中午的自然陽光下做輸出功率測量。完成品於封裝完後在第21天量測到開路電壓與開路電流分別約為 5.8V,51mA。
圖 14. 完成第21天量測開路電流。
圖 14. 完成第21天量測開路電流。
完成第21天量測開路電壓。
完成第21天量測開路電壓。

2.3 封裝

由於只使用了六個夾子做為暫時封裝,而沒有正確的使用熱壓膠膜來封裝兩片電極,因此電解質仍然在揮發的狀態中,另外由於在這個版本中也沒有使用熱壓膠將銀漿與電解液隔離開來,因此在注入電解液後的兩個小時內發現了銀漿與電解液有互相作用的現象,以及有部份銀漿被溶解的現象,但是在剛封裝完和經過一個月後再測量電池,仍然都得到約 0.33 瓦的輸出,沒有發現效能有極大的衰減。

圖 15. 銀漿與電解液互相作用後產生銀漿溶化並在電解液中擴散的現象
圖 15. 銀漿與電解液互相作用後產生銀漿溶化並在電解液中擴散的現象

Reference

  1. Mariani, Paolo, Antonio Agresti, Luigi Vesce, Sara Pescetelli, Alessandro Lorenzo Palma, Flavia Tomarchio, Panagiotis Karagiannidis, Andrea C. Ferrari, and Aldo Di Carlo. 2021. “Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules.” ACS Applied Energy Materials 4 (1): 98–110. https://doi.org/10.1021/acsaem.0c01960.
  2. Wei, Tzu‐Chien, Jo‐Lin Lan, Chi‐Chao Wan, Wen‐Chi Hsu, and Ya‐Huei Chang. 2013. “Fabrication of Grid Type Dye Sensitized Solar Modules with 7% Conversion Efficiency by Utilizing Commercially Available Materials.” Progress in Photovoltaics: Research and Applications 21 (8): 1625–33. https://doi.org/10.1002/pip.2252.
  3. Martineau, David. n.d. “Dye Solar Cells for Real.”
  4. Jo, Yimhyun, Cho-long Jung, Jeongmin Lim, Byung Hoon Kim, Chi-Hwan Han, Junhee Kim, Sungwon Kim, Donghwan Kim, and Yongseok Jun. 2012. “A Novel Dye Coating Method for N719 Dye-Sensitized Solar Cells.” Electrochimica Acta 66 (April):121–25. https://doi.org/10.1016/j.electacta.2012.01.055.


History

Advanced
Information Version
2024-07-31 21:13 admin 61
2024-07-31 21:10 admin 60
2024-07-31 21:08 admin 59
2024-07-31 21:07 admin 58
2024-07-31 21:05 admin 57
2024-07-31 21:03 admin 56
2024-07-31 15:49 admin 55
2024-07-31 15:44 admin 54
2024-07-31 15:38 admin img Plugin modified by editor. 53
2024-07-31 15:37 admin 52
2024-07-31 15:32 admin 51
2024-07-31 15:32 admin 50
2024-07-31 15:30 admin 49
2024-07-31 15:29 admin 48
2024-07-31 15:29 admin 47
2024-07-31 15:27 admin 46
2024-07-31 15:25 admin img Plugin modified by editor. 45
2024-07-31 15:24 admin 44
2024-07-31 15:23 admin 43
2024-07-31 15:21 admin 42
2024-07-31 15:21 admin 41
2024-07-31 15:20 admin img Plugin modified by editor. 40
2024-07-31 15:19 admin img Plugin modified by editor. 39
2024-07-31 15:19 admin 38
2024-07-31 15:19 admin 37
  • «
  • 1 (current)
  • 2

Calendar

SU MO TU WE TH FR SA
12