Loading...
 

History: Manufacturing of Large Dye Sensitized Solar Cell at home

Preview of version: 9

Manufacturing large dye sensitized solar cell glass at home laboratory


Abstract

Dye-sensitized solar cells are an easy-to-manufacture and cheap photovoltaic device that can be made in a home studio. However, the conversion efficiency is still low, making it difficult to achieve commercial purposes. However, because the pattern and color of the titanium dioxide layer can be highly customized, and compared with the general products on the market, which are relatively small in size, household electric kilns can be used to make relatively large, highly artistic and photoelectric products. interactive objects. This article records the production method of the finished product with a size of 30 by 60 cm. The chemical slurry and dyes are all purchased from Great Cells Solar, so the relevant manufacturing process refers to the conventional practice. The key parts of this experiment are the control of the baking temperature of the large glass, the design of the vertical conduction series of the FTO glass, and the sustainability record of the finished product.

The history of the development of the 3rd generation solar cells.
The history of the development of the 3rd generation solar cells.
DSSC schematic of the cells in this experiment in size of 30x60 cm.
DSSC schematic of the cells in this experiment in size of 30x60 cm.

Schematic representation of a TiO2-based DSSC. DSSC, Dye-sensitized solar cell.
Schematic representation of a TiO2-based DSSC. DSSC, Dye-sensitized solar cell.

1. Experiment

1.1 Conductive etching

  1. In order to obtain enough voltage, we must make a series circuit inside the battery. To achieve this goal, we must first etch the FTO glass to make a vertically conductive series circuit. The cross section of the structure and 12 batteries are explained in Figure 1. Size and position in two glass electrodes. Add 26.3 mL of 38% hydrochloric acid solution to the beaker, and then add water to fill up to 100 mL to prepare a 2M HCl solution. Stick Kapton tape on the FTO glass substrate to protect the parts that do not want to be etched, coat a layer of zinc powder on the FTO glass substrate, and then cover it with 2M HCl solution, and wait for the reaction to complete. Using a cotton swab, vigorously wipe the etched area on the substrate and rinse with deionized water. Finally use a multimeter to check the resistance of the etched area, make sure the 12 conductive strips are all isolated from each other.

Photoresist wet film cured on FTO glass using 365nm UV lamp
Photoresist wet film cured on FTO glass using 365nm UV lamp
After the photoresist wet film is fully cured, remove the Kapton tape to prepare for etching
After the photoresist wet film is fully cured, remove the Kapton tape to prepare for etching

Use a cotton swab to apply zinc powder to areas that do not have wet film photoresist
Use a cotton swab to apply zinc powder to areas that do not have wet film photoresist
Mix diluted hydrochloric acid with zinc powder
Mix diluted hydrochloric acid with zinc powder
Wait 15 minutes for the etch reaction to complete
Wait 15 minutes for the etch reaction to complete

Immerse the etched FTO in sodium hydroxide solution
Immerse the etched FTO in sodium hydroxide solution
After the wet film is completely peeled off, take out the FTO glass and clean the surface with water and ethanol
After the wet film is completely peeled off, take out the FTO glass and clean the surface with water and ethanol
Make sure the 12 conductive strips are completely disconnected
Make sure the 12 conductive strips are completely disconnected


Photoelectrode and counter electrode after etching
Photoelectrode and counter electrode after etching
Apply Kapton tape mask on the etched FTO glass, ready to coat titanium dioxide and platinum paste
Apply Kapton tape mask on the etched FTO glass, ready to coat titanium dioxide and platinum paste


1.2 Preparation and Sintering of TiO2 Layer for Photoelectrode

  1. Tape to the glass with Kapton tape and apply the TiO2 group barrier BL-1 slurry on a 60 x 30 cm piece of FTO glass using a glass rod applicator. Then, the FTO was sent into the electric kiln to reach 125ºC at a ramp rate of 8ºC per minute, and kept baking for 30 minutes and then naturally cooled to room temperature.
  2. Coat TiO2 porous layer 18NR-T slurry in the same way, with a ramp rate of 8 ºC per minute to 500ºC.

Titanium dioxide sintering temperature curve reference
Titanium dioxide sintering temperature curve reference


1.3 Counter electrode platinum layer preparation and sintering

  1. Preparation of the counter electrode: PT-1 platinum slurry was also coated on the FTO glass using a glass coater, and then cooled to room temperature naturally after a ramp rate of 8 ºC per minute to 500 ºC and maintained for 30 minutes.

Platinum sintering temperature curve reference
Platinum sintering temperature curve reference

Photoelectrode and counter electrode before entering the kiln for sintering
Photoelectrode and counter electrode before entering the kiln for sintering
Photoelectrodes and counter electrodes are alternately placed in the kiln for sintering
Photoelectrodes and counter electrodes are alternately placed in the kiln for sintering
TiO2 photoelectrode after sintering and before dyeing
TiO2 photoelectrode after sintering and before dyeing


1.4 Dye preparation

  1. Dissolve 0.1 g of N719 dye powder in 250 ml of 95% ethanol, use a heating mixer to heat at 50ºC for 18 hours to obtain N719 dye solution, fill it into a light-proof glass bottle and place it in a dark place at room temperature.
  2. Immerse the prepared photoanode in the N719 dye solution for 24 hours at room temperature, then take it out, recover the dye solution into a light-proof bottle, and then wash off the excess dye solution on the glass with ethanol.

Measure 100mg of N719 dye powder with a micro scale
Measure 100mg of N719 dye powder with a micro scale
N719 powder should avoid light pollution during heat stirring process
N719 powder should avoid light pollution during heat stirring process

1.5 Preparation of silver wires on the counter electrode

  1. Use Kapton tape on the glass to make the mask of the silver line. The silver paste model is Acheson's 725A, which is coated with a glass coater. After coating, place the counter electrode in an electric kiln and bake at 120ºC for 15 minutes, then cool down to room temperature naturally.
Silver wire mask making
Silver wire mask making
Silver wire made of 725A silver paste
Silver wire made of 725A silver paste

1.6 Electrolyte preparation

In this case the product from Greatcell solar EL-UHSE was used, or you can make your own electrolyte by following formula, there are two versions.
1. 64mg of iodine (i2), 830mg of potassium iodide (KI), 10ml of ethylene glycol.
2. 127mg of iodine crystals, 830mg of potassium iodide (KI), 10ml of ethylene glycol.

1.7 Cell Assembling

  1. The coatings on the two electrode faces are facing each other, fixed with several clips and injected electrolyte between them, using a dropper to drop a few drops of EL-UHSE electrolyte purchased from Great Cell Solar from the open gap.
The prepared counter electrode (left) and photoelectrode (right
The prepared counter electrode (left) and photoelectrode (right
Assembled 30x60cm dye-sensitive battery (with printing pattern, no silver wire built-in vertical conduction series
Assembled 30x60cm dye-sensitive battery (with printing pattern, no silver wire built-in vertical conduction series
Assembled 30x60cm dye-sensitive battery (no printing pattern, silver wire built-in vertical conduction in series
Assembled 30x60cm dye-sensitive battery (no printing pattern, silver wire built-in vertical conduction in series


2. Results and obstacles

2.1 Measuring voltage

  1. This experiment does not use a solar simulator as a test light source, and only measures the output power under natural sunlight at noon. After the finished product is packaged, the open circuit voltage and open circuit current are measured to be about 5.8V, 51mA respectively.

Open-circuit current measurement at the 21st day from the manufacturing
Open-circuit current measurement at the 21st day from the manufacturing
Open-circuit voltage measurement at the 21st day from the manufacturing
Open-circuit voltage measurement at the 21st day from the manufacturing


2.3 Assembling without PVA or heat bonding film

Because only six clips are used as temporary packaging, and the heat-pressing adhesive film is not used correctly to seal the two electrodes, the electrolyte is still in a volatilized state. The paste is isolated from the electrolyte, so within two hours after the electrolyte is injected, the interaction between the silver paste and the electrolyte, and the phenomenon that part of the silver paste is dissolved, but after the packaging and after After measuring the battery one month later, the output is still about 0.33 watts, and there is no significant decline in performance.

After the silver paste interacts with the electrolyte, the silver paste melts and diffuses in the electrolyte
After the silver paste interacts with the electrolyte, the silver paste melts and diffuses in the electrolyte


Reference

  1. Martineau, David. n.d. “Dye Solar Cells for Real.”
  2. Wei, Tzu‐Chien, Jo‐Lin Lan, Chi‐Chao Wan, Wen‐Chi Hsu, and Ya‐Huei Chang. 2013. “Fabrication of Grid Type Dye Sensitized Solar Modules with 7% Conversion Efficiency by Utilizing Commercially Available Materials.” Progress in Photovoltaics: Research and Applications 21 (8): 1625–33. https://doi.org/10.1002/pip.2252.
  3. Mariani, Paolo, Antonio Agresti, Luigi Vesce, Sara Pescetelli, Alessandro Lorenzo Palma, Flavia Tomarchio, Panagiotis Karagiannidis, Andrea C. Ferrari, and Aldo Di Carlo. 2021. “Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules.” ACS Applied Energy Materials 4 (1): 98–110. https://doi.org/10.1021/acsaem.0c01960.
  4. https://www.ossila.com/products/fto-glass-unpatterned#FTO-Glass-Etch
  5. Make a Solar Cell - TiO2/Raspberry based. https://www.youtube.com/watch?v=WHTbw5jy6qU
  6. “From Capitalist Realism to a Solarpunk Reality: Building the Infrastructures of a Better Future - YouTube.” n.d. Accessed February 9, 2024. https://www.youtube.com/watch?v=rsu8hHtomtQ.

History

Advanced
Information Version
2024-02-23 19:15 admin 38
2024-02-23 19:08 admin 37
2024-02-23 18:44 admin 36
2024-02-23 18:34 admin 35
2024-02-21 13:21 admin 34
2024-02-20 22:42 admin 33
2024-02-20 22:41 admin Page renamed from Manufacturing large dye sensitized solar cell glass at home laboratory to Manufacturing of Large Dye Sensitized Solar Cell at home. Semantic alias redirect created 32
2024-02-20 21:55 admin 31
2024-02-20 21:51 admin 30
2024-02-20 21:51 admin 29
2024-02-20 21:50 admin 28
2024-02-20 21:50 admin 27
2024-02-20 21:49 admin 26
2024-02-20 21:48 admin 25
2024-02-20 21:47 admin 24
2024-02-20 21:40 admin 23
2024-02-20 21:37 admin 22
2024-02-20 21:30 admin 21
2024-02-20 21:30 admin 20
2024-02-20 21:29 admin 19
2024-02-20 21:27 admin 18
2024-02-20 21:26 admin 17
2024-02-20 21:24 admin 16
2024-02-20 21:23 admin img Plugin modified by editor. 15
2024-02-20 21:22 admin 14
  • «
  • 1 (current)
  • 2

Calendar

November 2024
SU MO TU WE TH FR SA
27 28 29 30 31 01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30